Blame view
app/com/piki_ds/ver2ggh/expConTime.scala
13.7 KB
856dd1fc5
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
/** * Created by Evan on 2016. 5. 10.. */ package com.piki_ds.ver2ggh import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.spark.sql.{DataFrame, SaveMode, SQLContext} import org.apache.spark.sql.functions._ import org.apache.spark.sql.types.{StructField, StructType, DataTypes, TimestampType} import scala.collection.immutable.Iterable object expConTime { val sc = SparkContext.getOrCreate() val sqlContext = SQLContext.getOrCreate(sc) val hadoopConf = new org.apache.hadoop.conf.Configuration() val hdfs = org.apache.hadoop.fs.FileSystem.get(new java.net.URI("hdfs://pikinn"), hadoopConf) import sqlContext.implicits._ /** * uuid 별 노출, 오픈, 소비 정보를 불러옴 * * @param date * @return : DataFrame(event, time, uuid, cid, fromKey, position, dwell, consume) */ def getLogParse(date: String): DataFrame = { val current = date val (ymd, year, month, day) = (current, current.slice(0, 4), current.slice(4, 6), current.slice(6, 8)) val log = sc.textFile(s"hdfs://pikinn/log/dev=app/y=$year/mo=$month/d=$day/h=*/mi=*/*.gz") val format = new java.text.SimpleDateFormat("yyyyMMdd") val yester = format.format(format.parse(current).getTime - (24 * 1000 * 60 * 60)) val yesterday = yester.slice(0, 4) + "-" + yester.slice(4,6) + "-" + yester.slice(6,8) val currentday = year + "-" + month + "-" + day val action = log.map(x => { try { val s = x.split("\\|", -1) var mapping = scala.collection.mutable.Map.empty[String, String] if (s.size > 4 && ( s(2).forall(Character.isDigit(_)) && s(3).forall(Character.isDigit(_)) && s(4).forall(Character.isDigit(_)))) { val s2 = if (s(2).size == 10) s(2) + "000" else s(2) mapping = mapping ++ Map("category" -> s(0).replace("version=2&logArray=", ""), "event" -> s(1), "time" -> s2, "uuid" -> s(3), "cid" -> s(4)) if (s.size > 7 && s(4).size <= 6 && s(4).size > 0 && s(0).equals("CONTENT") && s(1).equals("EXPOSURE") && s(9).forall(Character.isDigit(_)) && s(9).size < 4) { def dwell() = math.max(math.min(s(5).toLong - s(6).toLong, 10000L), 0L).toString mapping = mapping ++ Map("fromKey" -> s(7), "position" -> s(9), "dwell" -> dwell()) Some(mapping) } else if (s.size > 7 && s(4).size <= 6 && s(4).size > 0 && s(0).equals("CONTENT") && s(1).equals("EXPOSURE") && s(9).forall(Character.isLetter(_)) && s(8).size < 4) { def dwell() = math.max(math.min(s(5).toLong - s(6).toLong, 10000L), 0L).toString mapping = mapping ++ Map("fromKey" -> s(7), "position" -> s(8), "dwell" -> dwell()) Some(mapping) } else if (s.size > 7 && s(4).size <= 6 && s(4).size > 0 && s(0).equals("CONTENT") && s(1).equals("OPEN") && s(7).size < 4) { mapping = mapping ++ Map("fromKey" -> s(5), "position" -> s(7)) Some(mapping) } else if (s.size > 8 && s(4).size <= 6 && s(4).size > 0 && s(0).equals("CARD") && s(1).equals("CONSUME")) { def consumeTime(i: Long) = if (s(7).forall(Character.isDigit(_))) math.min(s(7).toLong, 1000L * i) else 1000L * 0 mapping = mapping ++ Map("consume" -> consumeTime(30).toString) Some(mapping) } else if (s.size == 8 && s(4).size <= 6 && s(4).size > 0 && s(0).equals("CARD") && s(1).equals("CONSUME")) { def consumeTime2(i:Long) = if(s(6).forall(Character.isDigit(_))) math.min(s(7).toLong, 1000L * i) else 1000L * 0 mapping = mapping ++ Map("consume" -> consumeTime2(30).toString) Some(mapping) } else { None } } else { None } } catch { case e: Exception => None } }).flatMap(x => x) |
e4f0b0823
|
81 82 83 84 85 86 87 88 89 |
val df = action.filter(x => x != None).filter(x => x.getOrElse("ERROR", null) == null).map { x => try { Some(x("event"), x("time").toLong, x("uuid").toLong, x("cid").toLong, x.getOrElse("fromKey", null), x.getOrElse("position", null), x.getOrElse("dwell", "0").toInt, x.getOrElse("consume", "0").toInt) } catch { case e: Exception => None } }.filter(x => x != None).map(x => x.get) |
856dd1fc5
|
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
// 로그가 밀리는 현상이 발생 5/16일 기준 로그에서 5/16일 로그가 90.9% 5/15일 로그가 6.5% 를 차지하고 214개의 다른 날이 존재(오류포함)하기 때문에 기준일 t에 대한 데이터(91%)만 선택 val df1 = df.toDF("event","time","uuid","cid","fromKey","position","dwell","consume").where("uuid != 0"). where("event != 'EXPOSURE' or dwell != 0").where("event != 'CONSUME' or consume != 0").withColumn("timeStamp", column("time").cast(DataTypes.TimestampType).as("time")). where(s"timeStamp >= '$currentday'") df1 } /** * uuid 별 컨텐츠 오픈에 대한 카드 소비 정보를 매핑 * uuid 별 로그순서로 나열하고 일반적으로 컨텐츠 오픈 후에 카드 소비가 발생하기 때문에 * 컨텐츠가 오픈되면 오픈경로, 위치, cid, 오픈시간을 저장한 후 다음 cid에 매핑 * * (오픈 , 소비 정보 활용) * * @return : DataFrame(event, time, uuid, cid, fromKey, position, dwell, consume, openTime) */ def consumeIndexing(base: RDD[(Long, Array[(String, Long, Long, Long, String, String, Int, Int, Long)])]): DataFrame = { val out = base.map { y => val info = y._2.map { x => val (event, time, key, position, cid) = if (x._1 == "OPEN") (x._1, x._2, x._5, x._6, x._4) else ("CONSUME", 0L, "snull", "snull", 0L) (event, time, key, position, cid) }.filter(x => x._1 == "OPEN") var idx = -1 val result1 = y._2.map { x => def idxExc(idx: Int) = if (idx == -1) 0 else idx if (x._1 == "OPEN") { idx += 1 Some(x.copy(_9 = info(idx)._2, _8 = 0)) } else if (x._1 == "CONSUME" && x._4 == info(idxExc(idx))._5) { Some(x.copy(_9 = info(idxExc(idx))._2, _5 = info(idxExc(idx))._3, _6 = info(idxExc(idx))._4)) } else None } val result2 = result1.filter(x => x != None).map(x => x.get) (y._1, result2) }.flatMap(x => x._2).toDF("event","time","uuid","cid","fromKey","position", "dwell", "consume","openTime") val StringToInt = udf[Int, String]( _.toInt) val out1 = out.withColumn("position", StringToInt(out("position"))) out1 } /** * uuid 별 컨텐츠 노출에 대한 노출 시간 계산 * uuid가 컨텐츠를 소비 후 재 노출되는 컨텐츠의 노출 시간은 유효한가? * uuid별 노출 된 컨텐츠 및 위치에 따른 노출시간 과 uuid별 컨텐츠를 마지막으로 오픈하기 전까지의 컨텐츠 및 위치에 따른 노출 시간 두가지 모두 계산 * * (노출 , 오픈 정보 활용) * * @return : DataFrame(event, time, uuid, cid, fromKey, position, dwell, consume, openTime) */ def exposureTime(base: RDD[(Long, Array[(String, Long, Long, Long, String, String, Int, Int, Long)])]) = { val expTime = base.flatMap { x => try { val ar = x._2.groupBy(y => (y._4, y._5, y._6)).map(y => (y._1, y._2)).map { y => val sortY = y._2.sortWith(_._2 < _._2) val lastIdx = y._2.lastIndexWhere(y => y._1 == "OPEN") val out = if (lastIdx == -1) { y._2 } else { y._2.take(lastIdx + 1) } val result1 = y._2.filter(y => y._1 == "EXPOSURE" && y._7 > 1000).map(y => y._7).sum val result2 = out.filter(y => y._1 == "EXPOSURE" && y._7 > 1000).map(y => y._7).sum val size1 = y._2.filter(y => y._1 == "EXPOSURE" && y._7 > 1000).size val size2 = out.filter(y => y._1 == "EXPOSURE" && y._7 > 1000).size (y._1._1, y._1._2, y._1._3, result1, size1, result2, size2) }.map(y => (x._1, y._1, y._2, y._3.toInt, y._4, y._5, y._6, y._7)) ar } catch { case e:Exception => None } }.filter(x => x != None).toDF("uuid","cid","fromKey","position","expTime1","expSize1","expTime2","expSize2"). where("expTime1 !=0 and expSize1 != 0").where("expTime2 != 0 and expSize2 != 0") expTime } def main(args: Array[String]): Unit = { // 로그 파스 val saveDay = if(args.length == 1) args(0) else "20160518" val df1 = getLogParse(saveDay) // 로그를 (오픈, 소비) 정보와 (소비, 오픈) 정보 둘로 나눔 val base1 = df1.map { x => (x.getAs[String]("event"), x.getAs[Long]("time"), x.getAs[Long]("uuid"), x.getAs[Long]("cid"), x.getAs[String]("fromKey"), x.getAs[String]("position"), x.getAs[Int]("dwell"), x.getAs[Int]("consume"), 0L) }.groupBy(x => x._3).map(x => (x._1, x._2.toArray.sortWith(_._2 < _._2))) val base2 = base1.map(x => (x._1, x._2.filter(y => y._1.equals("OPEN") || y._1.equals("CONSUME")))). filter { x => x._2.map(y => y._1).contains("OPEN") } val base3 = base1.map(x => (x._1, x._2.filter(y => y._1.equals("EXPOSURE") || y._1.equals("OPEN")))) // (오픈, 소비) 정보에서 uuid별 로그 시간을 이용해 오픈 다음에 발생하는 같은 컨텐츠의 소비에 대해여 위치 및 오픈 경로 그리고 오픈타임 정보를 매핑 val openConsumeIdxed = consumeIndexing(base2) |
75bb1e19b
|
194 |
val openConsume = openConsumeIdxed.where("fromKey in ('h','m') and position != -1 and event = 'CONSUME'"). |
856dd1fc5
|
195 196 197 198 199 |
groupBy("uuid", "cid", "fromKey", "position"). agg(expr("sum(consume) as consume")) // (노출, 오픈) 정보에서 uuid별 컨텐츠 오픈 위치 및 경로에 따른 노출시간 계산 val expTime = exposureTime(base3) |
75bb1e19b
|
200 |
val exposureInfo = expTime.where("fromKey in ('h','m') and position != -1") |
856dd1fc5
|
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
val expCon = exposureInfo.join(openConsume, exposureInfo("uuid") === openConsume("uuid") && exposureInfo("cid") === openConsume("cid") && exposureInfo("fromKey") === openConsume("fromKey") && exposureInfo("position") === openConsume("position"), "leftouter"). drop(openConsume("uuid")).drop(openConsume("cid")).drop(openConsume("fromKey")).drop(openConsume("position")) expCon.write.mode(SaveMode.Overwrite).parquet(s"hdfs://pikinn/user/evan/Features/table=expConTime/dt=$saveDay") } } ///////////////////////ㅣ /* 로그 변환하여 종합 val tst3 = base3.flatMap { x => val ar2: Array[(String, Long, Long, Long, String, String, Int, Int, Long)] = x._2.groupBy(x => (x._4, x._5, x._6)).map(x => (x._1, x._2)).map { x => val lastIdx = x._2.lastIndexWhere(x => x._1 == "OPEN") val out = if (lastIdx == -1) { x._2 } else { x._2.take(lastIdx + 1) } (x._1, out) }.flatMap(x => x._2).toArray.sortWith(_._2 < _._2) ar2 }.toDF("event","time","uuid","cid","fromKey","position","dwell","consume","openTime") val tst5 = tst3.where("fromKey in ('h','m') and position != -1 and position < 1000 and event = 'EXPOSURE'"). withColumn("position", StringToInt(tst3("position"))). selectExpr("*", "case when fromKey = 'h' then 0 when fromKey = 'm' then position + 1 else null end as ranking"). groupBy("uuid","cid","ranking"). agg(expr("sum(dwell) as dwell")) val ar = Array( ("1",20,"m",1, 10), ("1",21,"m",2, 10), ("1",22,"m",3, 10), ("2",21,"m",2, 0), ("1",20,"m",1, 10), ("1",21,"m",2, 10), ("1",22,"m",3, 10), ("1",23,"m",4, 10), ("2",23,"m",4, 0), ("1",21,"m",2, 10), ("1",23,"m",4, 10) ) sqlContext.createDataFrame(ar).show val gg = ar.groupBy(x=> (x._2,x._3,x._4)).map(x => (x._1, x._2)).map { x => val lastIdx = x._2.lastIndexWhere(x => x._1 == "2") val out = if( lastIdx == -1) { x._2 } else x._2.take(lastIdx+1) (x._1, out) }.flatMap(x => x._2).toArray sqlContext.createDataFrame(gg).show ar.groupBy(x=> (x._2,x._3,x._4)).map(x => (x._1, x._2)).map(x => x) val tt = Array(("1",23,"m",4,10), ("2",23,"m",4,0), ("1",23,"m",4,10), ("2",23,"m",4,0), ("1",23,"m",4,10)) val tt1 = tt.take(lastIdx+1) val tt = consumeIndexing(df2) val dff = base2.take val tmp2 = df2._2.map { x => val (event,time,key,position, cid) = if (x._1 == "OPEN") (x._1, x._2, x._5, x._6, x._4) else ("CONSUME", 0L, "snull", "snull", 0L) (event, time, key, position, cid) }.filter(x => x._1 == "OPEN") var idx = -1 val gg = df2._2.map { x => println(x) println(idx) def idxExc(idx: Int) = if (idx == -1) 0 else idx if (x._1 == "OPEN") { idx += 1 Some(x.copy(_8 = tmp2(idx)._2)) } else if (x._1 == "CONSUME" && x._4 == tmp2(idxExc(idx))._5) { Some(x.copy(_8 = tmp2(idxExc(idx))._2, _5 = tmp2(idxExc(idx))._3, _6 = tmp2(idxExc(idx))._4)) } else None } val a = gg.filter(x => x != None).map(x => x.get) sqlContext.createDataFrame(a).show(100) val ar = Array( ("1",20,"h",0), ("2",21,null,0), ("2",22,null,0), ("2",23,null,0), ("1",30,"h",0), ("2",31,null,0), ("2",32,null,0), ("2",33,null,0), ("1",40,"h",0), ("2",41,null,0), ("2",42,null,0), ("2",43,null,0) ) //val tst = sc.parallelize(ar) tst.map {x=> val (opentime, fromkey, position) = if(x._1 == "1") { val opentime = x._2 val fromkey = x._3 val position = x._4 (opentime, fromkey, position) } if(x._1 == "1") { x.copy(_4 = opentime) } else { x.copy(_2 = fromkey, _3 = position, _4 = opentime) } } val t1 = ar.map { x => val (event,time,key) = if (x._1 == "1") (x._1, x._2, x._3) else ("2", 0, "0") (event, time, key) }.filter(x => x._1 == "1") var idx = -1 ar.map{ x=> println(x) println(idx) if (x._1 == "1") { idx += 1 x.copy(_4 = t1(idx)._2) } else { x.copy(_4 = t1(idx)._2, _3=t1(idx)._3) } } */ |